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1.1 PSEUDISM 

'E lec t ronic  s t r u c t u r e ' ,  i n t e r p r e t e d  widely, covers a l l  

t h a t  the  o u t e r  conduction e l ec t rons  i n  metals  do, and wi th  i t  

p r a . c t i c a l l y  a l l  s o l i d  s t a t e  p rope r t i e s ,  i n  t h e  sense t h a t  t he  

energy of a vacancy f o r  example i s  given i n  terms of t h e  energy 

of t h e  whole e l e c t r o n i c  system. The present  chapter  i s  concerned 

wi th  e l e c t r o n i c  s t r u c t u r e  t h a t  can be t r e a t e d  t h e o r e t i c a l l y  f rom 

a tfundamental' po in t  o f  view, i . e . ,  based on t h e  s o l u t i o n  of 

t h e  Schradinger equat ion w i t h  more o r  l e s s  well-defined and j u s t i -  

f i ab l e  approximations. The theory  o f  magnetism and of t r a n s p o r t  

p r o p e r t i e s  come within t h i s  d e f i n i t i o n ,  and form separate chapters .  

Otherwise, u n t i l  r ecen t  years, i t  was only t h e  band s t r u c t u r e & ( k )  

of an  e l e c t r o n  w i t h  wave vec to r  k t r a v e l l i n g  through t h e  pe r iod ic  
cu 

H 

p o t e n t i a l  t h a t  could be discussed from fundamentals, t oge the r  

with a few immediately r e l a t e d  p rope r t i e s  such as t h e  e l e c t r o n i c  

s p e c i f i c  heat. A phonon spectrum had t o  be analyzed i n  terms o f  

ad hoc fo rce  cons tan ts .  Now, however, i t  can be ca l cu la t ed  i n  

favourable  cases  f rom t h e  same bas ic  p o t e n t i a l  s e t  up f o r  comput- 

i ng  E (5). 
' fundamentallyt  i s  s t i l l  centred on t h e  band s t r u c t u r e ,  but has 

begun t o  expand. 

For simple metals, t h e  area t h a t  can be t r e a t e d  

The concept unifying much of what we have t o  say i s  tha t  

of t h e  pseudopotent ia l .  While t h e  t e r m  i s  r e l a t i v e l y  new i n  t h e  

p re sen t  context ,  some of t h e  ideas  i t  draws toge the r  preda te  i t  
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qualitatively by twenty years. Recent developments sharpen and 

exploit them. 
and 2 

Figs +,show the results of measurements on the Fermi 

surface of lead (Anderson and Gold 1965). The arcs of circles 

are what the Fermi surface would be for perfectly 

namely the Fermi sphere cut up by Brillouin zone 

pieces being translated by appropriate reciprocal lattice vectors 

g and reassembled in successive bands En(k) inside the funda- 
mental Brillouin zone (fig. 2). The observed Fermi surface can 
N 

be recognized as a modest distortion from the free electron 

model, and the same is true o f  all other metals studied except 

the transition, rare earth and actinide metals with incomplete 

inner d or/and f shells (seeCh. 2). Moreover the distortions 

conform qualitatively and sometimes quantitatively, to what 

would be expected on the basis of  the nearly free electron (NFE) 

approximation.* The band structures of the group IV semiconduc- 

Throughout this chapter we shall not define terms that * 

may easily be tracked down through the index of J. M. Ziman, 

Principles of the Theory of Solids, briefly referred to as 2. 

tors diamond, Si, Ge, gray Sn and the III-::V compounds have been 

probed by optical interband transitions, and the band structures 

inferred from the measurements also interpreted in NFE terms 

(see for example, Brust 1964, Cohen and Bergstresser 1966). 

Fermi surface measurements coupled with band structure calcula- 

tions on the semimetals As, Sb, Bi indicate a NFE situation 
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t he re ,  too (Cohen, Falicov and Golin 1964, P r i e s t l e y  e t  a1  1966, 

Lin and Falicov 1966, Falicov and Lin 1966). 

su r f ace  s t u d i e s  and o p t i c a l  p rope r t i e s  provide d e t a i l e d  informa- 

t i o n  about a p a r t  o f  t h e  band s t r u c t u r e ,  t h e  soft X-ray emission 

s p e c t r a  give a rough o v e r a l l  p i c t u r e  which i n  bandwidth and shape 

While t h e  Fermi 

conforms approximately t o  f r e e  e l e c t r o n s .  

Although most  of t h e  d e t a i l e d  evidence for t h e  NFE p ic -  

t u r e  has been b u i l t  up i n  the  last t e n  years ,  t h e  beginnings can 

a l ready  be seen i n  Mott and Jones' (1936) t reatment  o f  diamond 

and bismuth, for example, i n  NFE terms. 

The success  o f  t h e  NFE model f o r  t h e  band s t r u c t u r e  E(&) 
does not imply, however, t h a t  t h e  p o t e n t i a l  V ( r )  i n  t h e  s o l i d  i s  

weak o r  can be treated by per tu rba t ion  theory,  a s  assumed i n  most 

textbook p resen ta t ions  of the NFE method. 

N 

V ( 2 )  becomes very 

s t rong  near  t h e  atomic nuc le i ,  much l a r g e r  than  t h e  bandwidth of 

t h e  conduction e l e c t r o n s  and f a r  too s t rong  to be t r e a t e d  as a 

pe r tu rba t ion .  I n s i d e  the  ion core of t h e  metal  atom V ( r )  i s  a 

s u f f i c i e n t l y  deep p o t e n t i a l  wel l  t o  produce seve ra l  a tomic- l ike 
N 

o s c i l l a t i o n s  i n  t h e  wave funct.ion ( f i g .  3 ) .  

The a p p l i c a b i l i t y  o f  t h e  NFE model does mean t h a t  t h e  - 
n e t  s c a t t e r i n g  by an atom i s  weak. I n  t h e  augmented p lane  wave 

(APW) o r  Korringa-Kohn-Rostocker (KKR) formulat ion of t h e  band 

s t r u c t u r e  problem, each i o n  core i s  surrounded by a sphere o f  

r a d i u s  R ( f i g .  4 ) .  

equa t ion  i n  t h e  Swiss-cheese-like i n t e r s t i t i a l  region, sub jec t  t o  

E ( k )  i s  determined by so lv ing  t h e  S c h d d i n g e r  
N 

a boundary cond i t ion  on t h e  spheres given by t h e  r a d i a l  d e r i v a t i v e  
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of the wave function or the phase shift (Z. pp. 87-97). The 

inner potential enters only through the latter. We may picture 

the core of the atom as a black box (fig. 5) scattering plane 
waves weakly from k to k + q ,  and can introduce a weak pseudo- 

potential v ( q )  [in Fourier transform] which acting on plane 

waves would produce just this same scattering. 

/y - c v  

CI 

How the scattering can be weak when the potential is 

strong follows from consideration of the phase shifts which 

we may write as 

The integer p I < $try counts the number of 

innter radial nodes. Since the usual phase shift formula for the 

chosen so that I 5 e ,  t 

scattering (Schiff 1955, p. 105) only involves exp 2 i 7e Y any 

multiple of T in (1.1) does not  contribute and the scattering is 

determined by $- which is relatively small. The pseudopoten- 

tial therefore is a potential which has small phase shift 

instead of the large 

any oscillations of the corresponding pseudo wave function 0 in- 

5 
, and is not strong enough to produce re 

side the core. 

An explicit pseudopotential V is given by (Austin et a1 PS 
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c 

where t h e  )y, are t h e  Is, 2s, 2p, e t c . ,  o r b i t a l s  i n  t h e  i o n  core.  

( S t r i c t l y  they  a r e  t h e  Is, e tc . ,  s o l u t i o n s  of t h e  same Hamiltonian 

t h a t  operates  on t h e  valence e l e c t r o n s  and s o  may d i f f e r  s l i g h t l y  

from the a c t u a l  o r b i t a l s  of t h e  c o r e . )  

show ( Z .  p. 97) t h a t  it gives t h e  same valence eigenvalues i n  t h e  

pseudo wave equat ion 

It i s  not d i f f i c u l t  to 

* 

~~ ~ ~~ ~ 

* 
We use u n i t s  with 2m = % = e = 1, except t h a t  energ ies  

w i l l  normally be given i n  Rydbergs where 1 Ry = 13.6 eV. 

( - P ‘ t V  PS ) +  = 

as t h e  real  p o t e n t i a l  does. Since the  have d e f i n i t e  angular  

momenta e , t h e  second term of ( 1 . 2 )  p icks  o u t  and opera tes  d i f -  

f e r e n t l y  on t h e  d i f f e r e n t  4 components o f  0. If we consider  f o r  

a moment only t h e  e = 0 component, 0 i s  approximately a constant  

i n s i d e  t h e  core  because r a d i a l  o s c i l l a t i o n s  have been e l imina ted  

and an s - s t a t e  has  no angular nodes, and s o  may be taken ou t s ide  

t h e  matrix element i n  ( 1 . 4 ) :  

The < yc, V > a r e  t h e  expansion c o e f f i c i e n t s  of  V i n  terms of 

t h e  s e t  y . 
would vanish i d e n t i c a l l y .  A s  i t  is ,  t h e  )v a r e  a f i n i t e  

If we had a complete s e t ,  t h e  bracket i n  ( 1 . 4 )  

C 



set of core orbitals which form quite a good expansion set inside 

the core. Thus the second term in (1.4) cancels most of the 
4+ strong potential V inside the core, as illustrated for a free Si 

ion in fig. 6. In fact, (1.2) is a special case of a more general 

cancellation theorem developed by Phillips and Kleinman (1959), 

Cohen and Heine (1961), and Austin, Heine and Sham (1962). 

Two points must be emphasized. The first is that a 
\ 

scattering amplitude from Ato  & +  q depends in general not only 
cv 

on q but also on k, 1% -k q l  and the energy E The same applies 

to the pseudopotential, f o r  example the nonlocal operator (1.2), 

and what we previously wrote as v(q) should be written 

Actually (1.2) does not have an explicit energy dependence but 

some forms of V do, in particular those involving the logarith- 

mic derivative or phase shift which vary with energy. 
PS 

The second point is that the pseudopotential is weak 

compared with the real potential, t o o  weak to produce radial 

oscillations in the pseudo wave function 0. 
in fact weak enough to make perturbation theory very useful for 

In many cases it is 

some problems, at least as a first step. But it is not always 

so weak that good answers can be calculated with the lowest 

order of perturbation theory to every question in solid state 

physics! 

In many ways the pseudopotential approach represents a 

philosophy rather than a specific method: most calculations 
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* 

that are done with it could be done equally well without ever 

using the word. But progress in science means unifying more and 

more experience through well-defined concepts which may be ex- 

pressed in definite numbers. The pseudopotential serves that 

purpose for NFE metals. Ultimately most properties depend on 

the interaction of the conduction electrons with the ion cores, 

and so can be formulated in terms of v(q). 

Harrison 1966). Some properties turn out to be rather sensitive 

to the small errors in v(q) which even the best fundamental cal- 

culation contain. Here the principle of unifying knowledge 

suggests interpreting one set of experimental results in terms 

of another: 

the other, or both may be shown consistent with a single v(q). 

(See, for example, 

a v(q) may be fitted to the one and used to explain 



- 9 -  

1.2 BAND STRUCTURE CALCULATIONS 

The various methods for calculating band structures have 

been described well in several texts (see e.g., Z. ch. 3 ,  and 

Callaway 1964), and we will restrict ourselves t o  a few comments 

on the practical state of the art. 

In a typical metal such as Al, the bandwidth is of the 

order of 1 Ry, the band gaps of order 0.1 Ry. An accuracy of 

0.01 Ry in calculation is therefore highly desirable, and a few 

times Ry f o r  narrow bands such as in transition metals. 

The augmented plane wave (APW) and Korringa-Kohn-Rostocker (KKR) 

methods give a numerical accuracy of Ry without difficulty, 

and they have been tested against each other by applying both 

t o  the same potential (Segall 1962, Burdick 1963). In the 

orthogonalized plane wave (OPW) method, convergence becomes very 

slow beyond about 0.01 Ry, because the representation of the 

inner oscillations of y in terms of plane waves and core func- 
tions fc (Z. p. 94) is only an ad hoc NAnsatz'' and it requires 

plane waves of very short wavelength to make the final corrections 

to (Abarenkov and Heine, 1965). The success of  the method 

depends on the fact that the Ansatz is remarkably good for atomic 

potentials which become progressively steeper near the origin. 

It does not work for a square well with infinitely high walls, 

f o r  example. 

1961). 

The OPW method has been tested against KKR (Segall 

The cellular method has in the past suffered from some 
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l t i e s  which Altmann and co- iorkers r e p o r t  t o  have 

So fa r  there a r e  no r e s u l t s  which can overcome (Altmann 1958).  

be checked aga ins t  e x i s t i n g  KKR o r  APW c a l c u l a t i o n s  on exac t ly  

t h e  same p o t e n t i a l .  

Band s t r u c t u r e  c a l c u l a t i o n s  have been done f o r  a f e w  

compounds and s toichometr ic  a l loys ,  e.g. ,  T i c ,  V S i  wi th  APW's 

(Ern and Switendick, Mattheiss 1965) and CuZn by t h e  KKR method 

(Johnson and Amar 1965). Such work r equ i r e s  p ro fes s iona l s .  On 

the  o t h e r  hand, f o r  a simple metal t h e  KKR method i s  very easy 

t o  use, i f  t h e  s t r u c t u r e  i s  bcc o r  f c c  f o r  which t h e  requi red  

s t r u c t u r e  cons tan ts  have been t abu la t ed .  Even f o r  these t h e  con- 

s t a n t s  are only a v a i l a b l e  along symmetry l i n e s  i n  t h e  B r i l l o u i n  

zone, but t hese  may serve t o  give  q u i t e  a good p i c t u r e  of the  

band s t r u c t u r e .  Such ca l cu la t ions  can be very use fu l  as a guide 

i n  i n t e r p r e t i n g , f o r  example, de Haas-van Alphen measurements (see 

ch. 2 )  on t h e  Fermi su r face .  

s t i l l  f a l l i n g  wi th in  the competence of an e n t h u s i a s t i c  amateur. 

An APW c a l c u l a t i o n  may t ake  two years t o  develop f rom sc ra t ch .  

However, a t  least  one exper imenta l i s t  has l e a r n t  t o  use e x i s t i n g  

programmes t o  c a l c u l a t e  a band s t r u c t u r e  as an aid i n  i n t e r p r e t i n g  

h i s  data. The OPW and APW methods have been extended t o  include 

sp in -o rb i t  coupling, and i n  the case of APW a l l  o t h e r  r e l a t i v i s t i c  

e f f e c t s  (Weisz 1966, Loucks 1965a). The APW and KKR methods ex- 

pe r i ence  no d i f f i c u l t y  wi th  any kind of band s t r u c t u r e  but the 

OPW appears l e s s  s u i t a b l e  f o r  narrow d ( o r  f )  bands such as i n  

t r a n s i t i o n  metals. 

- 3 

The OPW method i s  next i n  d i f f i c u l t y ,  



. - 11 - 

From fl,we can expand the Schddinger equation in plane 

waves acted on by a pseudopotential, which will be relatively 

weak f o r  NFE band structures. Indeed any secular equation of the 

form 

can be interpreted that way with pggl as the pseudopotential 
*.+. 

matrix elements. The OPW and APW methods fall in this category: 

is the angle between k-g and k-gf, 
gg &e - A  

(where 0 

a the-Folume of the unit cell, and & 1 
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t h e  d e r i v a t i v e  o f  t h e  radial wave func t ion&) .  

been der ived r e c e n t l y  by Ziman (1965) from the  KKR method: 

Another one has 

(1.10) 

@is formula presumably has  the same e x c e l l e n t  convergence i n  g ,g !  

as t h e  APW method because i t  i s  based i n  t h e  same way on exact  

s o l u t i o n  of t h e  wave equation i n s i d e  R. 

t o  (APW) i n  t h a t  t h e  summation o v e r  e converges much more 

rap id ly .  r (APW) involves  &e d i r e c t l y ,  which tends to t h e  

It is  probably s u p e r i o r  

free s p h e r i c a l  wave je a t  large -e because t h e  r a d i a l  wave 

equat ion i s  dominated by t h e  ' c e n t r i f u g a l  term' ((!+ l)/r2, 

whereas p (KKRZ) 

% d e v i a t i o n  of 

depends through t h e  phase s h i f t  only on t h e  

from j . I n  f a c t ,  Morgqn (1966) has shown e 
t h a t  

(1.11) 
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where P o  i s  an 'empty l a t t i c e '  term which however i s  not  ident-  

i c a l l y  zero.  T h i s  i l l u s t r a t e s  how t h e  pseudopotent ia l  i s  not a 

unique quant i ty :  any p o t e n t i a l  can be used which g ives  t h e  cor- 

r e c t  phase s h i f t  o r  logarithmic d e r i v a t i v e  @!/@ a t  R. 

Another pseudopotential ,  se t  up t h i s  t i m e  i n  r space, i s  

simply a square well o f  depth A i n s i d e  some model r ad ius  % and 

t h e  appropr ia te  Coulomb p o t e n t i a l  ou t s ide  ( f i g .  7 ) :  

(1.12) 

T h i s  i s  t h e  pseudopotent ia l  o f  t h e  bare  ion  core  o f  charge z ,  t o  

which has t o  be added t h e  p o t e n t i a l  f rom the conduction e l e c t r o n s  

a s  d e t a i l e d  below. The well depth A can be ad jus ted  s o  that  (1 .12 )  

reproduces e x a c t l y  t h e  spec t roscop ica l ly  observed energy l e v e l s  of 

one e l e c t r o n  added t o  the  ion (Abarenkov and Heine 1965). 

depends on the angular  momentum L , and (p, i n  (1 .12)  i s  a pro- 

j e c t i o n  ope ra to r  t o  p i ck  out t h a t  component of t h e  t o t a l  wave 

A 

func t ion .  a l s o  has t o  depend s l i g h t l y  on E t o  f i t  t h e  

whole series of levels  of given -e.  
plane  waves, of the nonlocal ope ra to r  (1 .12 )  can be c a l c u l a t e d  

The mat r ix  elements, between 

a n a l y t i c a l l y  without d i f f i c u l t y  and i n s e r t e d  i n  t h e  s e c u l a r  equa- 

t i o n .  The model r ad ius  % may be s o  chosen that t h e r e  i s  l i t t l e  
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discontinuity in V at %, thus reducing the high Fourier com- 

ponents of V 
P 

as much as possible (Animalu and Heine 1965). 

Incidentally, the eigenfunctions 
PS 

of all these pseudopotential methods correctly represent the wave 

function 

1966, Morgan 1966). 

in the region between the spheres (fig. 4) (Slater & 
Before any of these methods can be applied t o  calculate 

E ( k ) ,  the complete potential V or pseudopotential V 

solid has of course t o  be set up. The potential of the ion core 

in the 
hr PS 

is often taken from a Hartree-Fock calculation. On the other 

hand, the use of a model potential such as (1.12) fitted t o  the 

spectroscopic energy levels has the advantage of automatically 

including exchange with the core orbitals and all internal cor- 

relation effects. In some cases, such as the d states in noble 

metals, a different functional form inside RM has been found bet- 

ter than the square well. To obtain A for & >/ 1 at the energy 
required in the solid, often entails some extrapolation from the 

e 
atomic energy levels where A t  has been determined, and this can 
introduce a little uncertainty in the method. 

As regards the conduction electrons, often the potentials 

of neutral free atoms are taken and simply superposed. These are 

usually from Hartree-Fock-Slater calculations (HFS, with the 

Slater (1951) approximation for exchange), which have been pub- 
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l i s h e d  f o r  a l l  elements. 

atoms has been constructed,  it has t o  be averaged t o  s p h e r i c a l  

symmetry i n s i d e  the  r ad ius  R f o r  use i n  t h e  APW o r  KKR method. 

It i s  a l s o  approximated t o  by cons tan t  (some average va lue )  

between t h e  spheres f o r  t h e  KKR method, while v a r i a t i o n s  about 

t h i s  constant  can be incorporated wi th  APWfs if des i red .  Ex- 

change w i t h  t h e  core  and conduction e l e c t r o n s  i s  then  usua l ly  

t r e a t e d  by t h e  Hartree-Fock-Slater approximation. 

procedure of superposing neu t r a l  atoms i s  somewhat arbi t rary,  

i t  has y ie lded  many use fu l  answers (See, f o r  example, Loucks 

1965b). 

func t ions  and made t h e  whole p o t e n t i a l  s e l f - c o n s i s t e n t ,  aga in  

wi th in  t h e  HFS scheme. 

After  t h i s  p o t e n t i a l  of superposed 

Although t h e  

Herman (1964) has used OPWfs t o  s o l v e  f o r  t h e  wave 

The use of pseudopotent ia ls  allows u s  t o  approach t h e  

whole problem o f  s e t t i n g  up a s e l f - c o n s i s t e n t  p o t e n t i a l  f o r  t h e  

conduction e l e c t r o n s  i n  another way (Cohen and P h i l l i p s  1961). 

We first  need the  pseudopotent ia l  V 

c a l c u l a t e d  f rom (1 .7)  o r  t h e  model p o t e n t i a l  (1.12), though 

there  i s  no reason why o the r  forms should not  be used. The 

n e x t  s tep i s  t o  t r e a t  t h e  conduction e l e c t r o n s  as a uniform 

negat ive  j e l l y  i n t o  which the  ions  a r e  p lan ted .  The pseudo- 

p o t e n t i a l  o f  t h e  whole system i s  

o f  a bare ion, u sua l ly  
PS 

(1.14) 
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b (We write v (g), leaving the other variables of (1.5) understood.) 

The electron gas does not contribute to the Fourier components 

v (g) in (1.14) becuase it is uniform. It only cancels the in- 

finite g = 0 component which the ions alone would give. We now 

allow the conduction electrons to react with the 'bare1 pseudo- 

potential (1.14) and screen it. 

charge density is set up, proportional to the 'applied' potential 

v (g) in lowest order of perturbation theory if we treat v (g) 

as weak. 

The result of a self-consistent calculation is t o  reduce v (g) 

to 

b 

A Fourier component p g  of the 
yv 

b b 

(The method therefore only applies in MFE cases.) 
b 

(1.16) 

where E (g) is the appropriate screening factor or 'dielectric 
constant' (Z. pp. 126-9), The pseudopotential for the whole 

system is then 

The point is that since the pseudopotential acts on pseudo wave 

functions which are plane wave we can take E (g) from the 

theory of the free electron gas. Such is the principle of the 

be&e b e i m j  per fur bed) 

method, but there are several points of detail to be inserted. 

Since the V is nonlocal, the screening is not simply given by 

a multiplicative factor as in (1.16) and has to be calculated 
PS 
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nonlocally (Harrison 1963, Anirnalu 1965). The charge density of 

the conduction electrons is not uniform, even in lowest approxi- 

mation, because of the oscillations of 

resulting in a reduced density there (the 'orthogonality hole') 

and a heaping up to a density z(1 + 4) electrons per atom outside 
the core. o( is the order of 0.1 and the effect may be in- 

corporated with V in (1.15). Exchange and correlation with 
PS 

the core electrons is included in V of the ion. Exchange and 

correlation with the conduction electrons produces a hole which 

moves with the electron and contributes an exchange and correla- 

To a first approximation tion energy 

it is uniform because the electron gas is uniform, but it flue- 

tuates somewhat due to the charge density fluctuation 

That contribution can be included in (1.16), the best method at 

present probably being to calculated 

screened exchange interaction treated in the Hubbard approximation 

(Sham 1963, 1965). We obtain 

!kk in the core (fig. 3 ) ,  
J 

Here 

PS 

(k) for the state k. 
P x c  

P g -  
40 

E ( g )  with a s h o r t  range 

(1.18) 

(1.19) 
Here gF0 is the free electron Fermi energy$ 2 2  kF /2m. 



whew The term [ , . . . 3 in (1.18) comes from the exchange and ks 
is the screening parameter taken as (2kF/7r)* in atomic units. 

1 

The effect of the orthogonality hole in modifying the screening 

is taken into account crudely by the factor 1 + O( in (1.18). 

These are small points. The usefulness of the dielectric screen- 

ing method depends on the fact that and 

is already of order 1.2 at the first reciprocal lattice vectors. 

E (g) + 1 as g -> uo 
l 

Thus a error in the screening, i.e., in c(g) - 1, results 
only in a 2°/0 error in v(g) in (1.16). The /CC,,(k) can be cal- 

culated at the Fermi level from formulae for the total exchange 

and correlation of the electron gas. As nearly as theory or 

experiment can tell (10-20°/0, see for example, Pines 1955), 

Pxc(k) may be taken as constant throughout the band. 

there is a rather small and rather uncertain correlation correc- 

I Finally 

I 

tion which may be added, coming from the fact that correlation 

with core electrons and with conduction electrons is not additive 

as assumed implicitly so far. We merely mention these points to 

indicate how far it is possible now t o  treat all the interactions 

between nonlocality, self-consistency including the orthogonality 

hole, exchange and correlation (see, e.g., Animalu and Heine 1965, 

Harrison 1966). In one calculation on Si self-consistency, 

exchange and correlation were computed with the calculated Bloch 

functions (Phillips and Kleinman 1962). 

A complete review of band structure calculations up to 

1962 may be found in Callaway (1964), with its useful list of 

references including the titles of all the papers to serve as one- 

line abstracts. 
A good general text is Slater (1965). 

Some further calculations are listed by Heine(1965). 
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1.3 ANALYSIS OF NFE BAND STRUCTURES 

many 

with 

tice 

In 9 1 it was emphasized that the band structures of 
metals and semiconductors can be described in NFE terms 

a pseudopotential v(g) for scattering by a reciprocal lat- 

vector g. In $ 2  we saw how to calculate v(g), but for 
(r 

really useful results one needs to achieve an accuracy of 0.01 

Ry or better, which is difficult when one has cancellations be- 

tween quantities inherently of magnitude l Ry in a complicated 

self-consistent many-body system. We shall therefore discuss 

the analysis of experimentally measured band structures to yield 

the 'observed' pseudopotential v(g). These pseudopotentials can 

then be correlated with atomic properties to describe trends in 

the band structures across the eriodic table, or used to calcu- 
late other properties of the me ! als as in 5 4. 

A typical analysis is that of Harrison (1959) and Ash- 

croft (1963) on the Fermi surface of aluminium as determined by 

the de Haas-van Alphen effect (ch. 2). We start with the secular 

equation (1.6) of infinite order, where we shall now use v instead 

of 

ment g-gc while remembering the full nonlocal nature (1.5). 

Only the f111) and {200)  Brillouin zone planes cut the Fermi 

sphere, the others having only a minor effect on ( k )  near the 

Fermi energy E,. 
Brillouin zone, only the plane waves Ik = sn > with 

and sometimes write it for simplicity with a single argu- 

v -  

v 

Around the corner W1 = (a/a)(2,0,1) of the 

N 
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(1.21) - 0  - 

(1.20) 

mix s t rong ly  i n t o  t h e  pseudo wave func t ion  Qk becuase they  l i e  

near  t he  corners  W1 t o  W4 ( f i g .  8)  and are n e a r l y  degenerate.  

We need only i n v e s t i g a t e  e ( k )  i n  1/48th par t  o f  t he  zone 
4 

around W1 because o f  the cubic symmetry. 

t i t i o n  the  s e c u l a r  equat ion 

We can t h e r e f o r e  par- 

where h denotes a higher g n o t  of t h e  s e t  (1.20), and apply a 

t ransformat ion  of t h e  type 
w N 

A B  

/c, 

B* C 

-lU I A-BC B* 

0 

0 (1.22) 

0 

c-E*A-~B 
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The original AB& secular equation (1.21) is split into two 

separate ones in the upper left and lower right corners. In 

this way we can fold the infinite secular equation (1.6), 

(1.21) into a 4x4 secular equation which gives the lowest four 
eigenvalues exactly. 

the A-’ in (1.22) by perturbation theory: 

The terms may be evaluated by expanding 

l r ’ -  - 
39 

-t 2 
h 
N 

The price that has to be paid for folding 

e 

into a finite secular 

equation is that the second and higher order terms in (1.24) 

introduce a k and 

secular equation. 

dependence is there already, so nothing is lost if the corrections 

terms are small. For A t  , Animalu (1965) calculated them to be 
about 0.005 Ry. For calculating the shape of the Fermi surface 

the & dependence is immaterial since it is set equal to a 

E dependence into the matrix elements of the 

In the case of pseudopotentials such k and E 
# 

& 
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constant  E F0 
con t r ibu te  t o  t h e  band gap which, a t  t h e  cen t r e  of a zone face ,  

i s  equal t o  

[ Inc iden ta l ly ,  t h e  E dependence of v ( g )  does 

(1.26) 

where E and 6 a r e  the  s - l i k e  and p - l ike  s t a t e s  a t  t h e  band P 
gap* 1 

The Fermi su r face  of A L  was f i t t e d  wi th  t h e  4x4 equat ion 

t r e a t e d  as l o c a l ,  i . e . ,  a func t ion  of I G - G f I  (1.23) wi th  t he  TGG, 
& W  

hC 

only.  Thus there were only two parameters which were found t o  

have the va lues  (Ashcroft  1963) 

The number of decimal p laces  witnesses  t o  t h e  accuracy of t h e  f i t ,  

much higher  than  one could expect from fundamental c a l c u l a t i o n s  

except by chance. But i t  i s  a t  f i rs t  s i g h t  ve ry  s u r p r i s i n g  tha t  

such a good f i t  was obtained with cons tan t  7 matr ix  elements i n  

v i ew o f  the considerable  non loca l i t y  of v ( g )  ( f i g .  9 ) .  The 

reason  i s  that a p a r t i c u l a r  TGGI only has a major e f f e c t  on t h e  

shape of t h e  Fermi su r face  when k-G, k-GI a r e  bo th  near  t h e  Fermi 
N W  

N r c .  hY 
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level, i.e., when the scattering by G-G' is nearly between two 

points on the Fermi sphere. 

for that geometry (fig. 10). 

E r -  

The values (1.27) represent TGG, 
&N 

In a study of Si and Ge (Brust 19@+.: see also similar 

work on compound semiconductors by Cohen and Bergstresser 1966) 

the band structures as inferred from optical and other data were 

fitted successfully using equation (1.6) with 

v(lll), ~(220)~ ~ ( 3 1 1 )  as three (constant) parameters and all 

set equal to zero. Again many of the matrix elements gg ' higher v 

are probably quite spurious because of the real nonlocality, but 
hh 

as one calculates different bands and different k particular 

matrix elements enter very strongly in a way similar to fig. 10 

and the numerical values correspond to that situation. 

As band structures become more precisely established, 

it is unlikely that fitting with constant matrix elements will 

suffice. This has already been found in Mg where there is a 

large amount of very precise de Haas-van Alphen data (Starke, 

private communication), and in Bi (Golin 1967). The need then 

arises for a model of the matrix elements with a small number of 

physically meaningful parameters. We can always split the pseudo- 

potential (in r space) into some mean local potential which acts 

equally on all e components of Q, plus some nonlocal parts. c.l 

The local part gives constant matrix elements and may be treated 

as before. Alternatively a simple one-parameter model has been 

found useful by Ashcroft (1967). The cancellation theorem and 

fig. 6 suggest we may take the bare pseudopotential of an ion as 
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zero inside some adjustable radius RA which is nearly that of the 

ion core, and -z/r outside. We obtain 

(1.28) 

where E (g) is the screening factor (1.18) and g = G-GI 1 .  A 

second parameter can of course be introduced by giving the well 

a depth as in fig. 7. The nonlocal part may be expressed as the 

deviation of the A i  

we have chosen this mean t o  be zero, and if we regard only = 0 

and 1 as important at such small r, we may pu t  

1, - 

in (1.12) from the mean. By adjusting RA 

We write 

K =  I k - k I ,  Y 
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thm t h e  mat r ix  elements of (1.29) f o r  K=K1 are 

v d  GG' = 2~ R,q - 7 c L ' L d 9 X j ( X )  
I n 

and f o r  KfKf 

Vnonloc, GG' 
rcrv 

There i s  no reason why RA i n  t h e  l o c a l  and nonlocal  parts should 

be exac t ly  the  same, I f  t h e  = 2 p o t e n t i a l  i s  thought t o  be 

unusual ly  s t rong,  such as i n  Ca and perhaps K just before t h e  3d 

t r a n s i t i o n  s e r i e s  (Vasvari ,  Animalu and Heine 1967), then  we can 

t a k e  the t = 2 p o t e n t i a l  as t h e  l o c a l  one and w r i t e  i n s t e a d  of 

(1 .29)  
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I 

In (1.31) the first tw 
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terms in the curly br 

multiplied by A and the remainder by A'. 

cket must th n be 

As already described, the Fermi surface of Ae was fit- 

ted by a folded 4x4 secular equation with 7 matrix elements, 
whereas the band structure of Si with a large (essentially infinite 

0rder)secular equation and matrix elements of v. The former has 

the advantage of smaller size and incorporation of some higher 

order correction in an effective matrix element. The arbitrari- 

ness of the pseudopotential (subject always of course to its 

being a valid pseudopotential) results in varying behaviour 

for v(g) at large g. 

partial t-matrix (1.24), one has included higher order Born 

approximations and arrived at a more invariant quantity, since 

a l l  pseudopotentials must give the same final scattering and 

band structure. If the summation in (1.24) is extended over all 

g it defines in fact the t-matrix. However, the use of a small 
P 4 '  

finite secular equation also has two disadvantages. Firstly the 

correction terms in (1.24) and 't depend to some extent on the 

structure considered, whereas v is the pseudopotential for one 

screened atom, so that there is some error in transferring values 

of 't found by fitting the Fermi surface in one structure to another 

situation. Secondly the 4x4 secular equation is only good near 

W. At K in the zone (fig. 8), there are three plane waves in the 

lowest degenerate set, and two (~r/a)(-5/2,0,3/2), (~r/a)(3/2,0,-5/2) 

in the next highest set of which only the former is included in 

the four k-G's. In principle the k dependence of the higher 

By summing up some of this into what is a 

N 
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order corrections in the 7 matrix elements compensates for this, 
but in practice such an asymmetry is a serious drawback and Melz 

(1966) could not get an unambiguous fit t o  his measurements on 

the change of Fermi surface around K with pressure. 

We conclude it may be better t o  use a large secular 

equation with v matrix elements, than a reduced one with 7 
elements. In that case there is a problem because (1.28), (1.31) 

do not  drop off very rapidly at high gfs due t o  the discontinui- 

ties in the potentials V assumed in real space. We may remedy PS 
this by assuming instead a smoothed pseudopotential 

U 

where F is a Gaussian smoothing function. The effect on the matrix 

elements (1.28), (1 .31)  is to multiply them by D(g), the Fourier 

transform of F, which is also a Gaussian 

The limited experience at present suggests v(g) can be taken t o  

cut off at about 3kF, and B may be chosen accordingly. 

Spin orbit coupling Vso may be included by writing 
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I 
where 4, 9 denote t h e  components of  t h e  Pau l i  s p i n  m&trioes 

SX’ S y’ sz* Somewhat more complicated expressions may be de- 

r i v e d  f rom OPW’s (Weisz 1966) o r  the  square-well model p o t e n t i a l  

(Animalu 1966). 

The band s t r u c t u r e s  change sys t ema t i ca l ly  both wi th  

valency z and wi th in  one column of t h e  pe r iod ic  table. Since 

only a f r a c t i o n  of  the pseudopotent ia ls  have been determined 

experimentally,  w e  show t h e  t rends  from t h e  ca l cu la t ed  v(g) ,  

which however have been found i n  f a i r  agreement wi th  observed 

ones f o r  several metals. T a b l e  1: gives  t h e  approximate hypo- 

t h e t i c a l  band gaps 

f o r  t h e  z = 2 and 3 metals  i f  they occurred i n  t h e  bcc s t r u c t u r e  

with t h e i r  normal atomic volume.. ( T h i s  s t r u c t u r e  was chosen 

because the B r i l l o u i n  zone is  bounded by only one type of zone 

face ,  the  {110] . )  

lower than t h e  z = 2 ones. This  r e f l e c t s  t h e  f a c t  that the  i o n  

We note  the  z = 3 band gaps are sys t ema t i ca l ly  

cores  of t h e  z = 3 atoms a r e  sma l l e r  r e l a t ive  t o  t h e  atomic radii ,  

making gRA i n  (1.28) small and mostly less than  

i s  negat ive.  Within elements of the  same z ,  

as the atomic number Z increases  i n  accordance wi th  t h e  lowering 

1 so t h a t  v ( g )  

6 ,  - Ep decreases  

of t h e  s-state r e l a t i v e  t o  the p-state i n  t h e  f ree  atoms (Cohen 

and Heine 1958, Austin and Heine 1966, Heine 1966). 
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1.4 OTHER ELECTRONIC PROPERTIES OF NFE METALS 

The total energy and behaviour of metallic systems is 

almost entirely determined by the conduction electrons. In NFE 

metals their interaction with the ions is completely describable 

by the pseudopotential. We might therefore hope to formulate in 

terms of v(q) everything from the energy of a vacancy to the scat- 

tering of electrons in a liquid metal, from the electron-phonon 

interaction t o  the structure of alloys. Indeed some progress 

along these lines is slowly being made (Harrison 1966). 

We may formulate the total pseudopotential in the system 

f o r  an arbitrary set of atomic sites sn in the manner of (1.17): 

where N is the total number of atoms in the system and S ( q )  the 

same structure factor as in X-ray or neutron diffraction. There 
N 

is no difficulty generalizing (1.37) t o  more than one atomic 

species. 

In order t o  make further progress we clearly need t o  

know v(q) as a function of q. We have shown in $ 2  how it may 
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be ca lcu la ted ,  but have emphasized repea ted ly  i n  $5 2 and 3 t h a t  

i t  i s  d i f f i c u l t  t o  achieve the  l as t  0.01 R y  o r  s o  i n  accuracy 

though t h i s  i s  important f o r  t he  app l i ca t ions .  The wise t h i n g  

i s  the re fo re  t o  l e t  n a t u r e  t e l l  us  t h e  answer and take  v ( q )  from 

an a n a l y s i s  of ,  say, t h e  observed Fermi su r face  determined from 

de Haas-van Alphen measurements i n  t h e  manner of $ 3 .  

i l l u s t r a t e d h i n  f i g .  11. 

va lues  (1 .27)  a t  t h e  (111) and (200)  r e c i p r o c a l  l a t t i c e  vec tors ,  

T h i s  i s  
.fibv Cr-IUrniniuw 

The two po in t s  on t h e  r i g h t  a r e  the  

and t h e  po in t  a t  q = 0 i s  

- N - 3 F,, 

f i x e d  by bas ic  theory  ( Z .  pp. 130, 177) .  

d e n s i t y  of s ta tes  a t  t h e  Fermi l e v e l  p e r  atom, and 

e l e c t r o n  Fermi energy. A whole curve f o r  v ( q )  was c a l c u l a t e d  

from fundamentals. It missed passing through v ( l l 1 )  and v ( 2 0 0 )  

Here fl( E,) i s  the  

6, t h e  f r e e  

by 0.01 Ry, and was then  ad jus ted  s l i g h t l y  t o  f i t  them. We may 

t h e r e f o r e  take t h i s  as a reliable i n t e r p o l a t i o n  of v ( q )  from t h e  

observed p o i n t s  ( f i g .  l l ) ( A s h c r o f t  and Guild 1965). 

The r e s i s t i v i t y  of molten aluminium can now be calcu- 

la ted.  It i s  p ropor t iona l  t o  (ch.  6 )  

(1.40) ~ 
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?here S ( q )  v(q) is the matrix element of the potential (1.37) for 
scattering by wave vector q. Here IS(q)l for the liquid was 

taken directly from X-ray measurements, and excellent agreement 

with the observed resistivity was obtained (Ashcroft and Guild 

1965). 
matrix element of the nonlocal pseudopotential relevant to scat- 

tering on the Fermi sphere, and this is precisely the geometry 

to which the experimentally determined points v(ll1) and v(200)  

on fig. 11 relate, as shown in fig. 10. In fact many properties 

of metals are concerned with processes around E,, for example 
the resistivity of the solid at high temperature due to phonon 

scattering, and the enhancement of the effective mass at low 

temperature by the electron-phonon interaction ( 1.5).  Both 

these were calculated for A t  
obtained (Ashcroft and Wilkins 1965). The self-consistently 

determined potential (l.l5), (1.16), (1.37) solves then the old 

question of 'rigid ion' versus 'deformable ion' in the electron- 

phonon interaction (Sham and Ziman 1963). The pseudopotential 

moreover becomes the intermediate vehicle for interpreting one 

set of properties in terms of another. A further example is the 

deformation potential in Si calculated by Kleinman (1963) with 

the OPW form. 

2 

It is important to observe that in (1.40) one needs the 

§ 
and good agreement with experiment 

The success of such calculations depends of course on 

the transferability of v(q) between one material and another. 

A rather more drastic test of this was made f o r  Sb. The pseudo- 

potential of Sb, as determined from the optical properties of 
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InSb, was used t o  c a l c u l a t e  the  band s t r u c t u r e  of Sb semimetal. 

I n  antimony seve ra l  bands a r e  nea r ly  degenerate around E, and 

a good s t a r t i n g  approximation f o r  v ( q )  i s  necessary t o  obta in  

even q u a l i t a t i v e l y  a unique p i c tu re .  Only small  adjustment of  

v ( q )  was requi red  t o  f i t  t h e  observed Fermi sur face  (Fal icov and 

Lin 1966). I n  t r a n s f e r r i n g  pseudopotent ia ls  a co r rec t ion  should 

be made f o r  change i n  atomic volume, then,' i n  (1.15). Also 

i n  (1 .16)  depends on the e l e c t r o n  d e n s i t y  . For indium i n  

InSb, should one t ake  t h e  mean dens i ty  of f o u r  e l ec t rons  pe r  

atom, o r  j u s t  t h ree?  These a re  nonl inear  e f f e c t s  not  included 

i n  t h e  simple d i e l e c t r i c  screening method: it i s  probably b e s t  

t o  take  a d e n s i t y  of t h r e e  e lec t rons .  Fig.  12 shows v ( q )  f o r  

indium determined by Cohen and Bergs t r e s se r  (1966) from t h e  

o p t i c a l  p r o p e r t i e s  of InP, InAs, InSb, a f t e r  s c a l i n g  t o  t h e  
ht w ; f h w )  ad J'KSt;fiI the screen in9 e 

atomic volume o f  indium metalk There i s  c l e a r l y  some s c a t t e r  

about a smooth curve ind ica t ing  v a r i a t i o n s  i n  t h e  screening. 

More remarkable i s  t h e  smallness o f  t h e  v a r i a t i o n .  P a r t  o f  t h e  

explanat ion i s  tha t  ~ ( q )  i s  about 1.1 t o  1 . 2  f o r  these  q t s ,  

s o  t h a t  t h e  valence e l e c t r o n  dens i ty  a l ready  con t r ibu te s  l i t t l e ,  

and v a r i a t i o n s  i n  environment have only very small  effec:?YMe 

now discuss  t h e  t o t a l  energy u of  t h e  whole system up t o  

Paras rA 

second order  i n  t h e  pseudopotential ,  and i t s  app l i ca t ion  t o  

var ious  p r o p e r t i e s .  To lowest order  we t r e a t  t h e  atomic poly- 

hedron a s  a sphere of rad ius  Ra and t h e  e l e c t r o n s  as  a f r e e  

e l e c t r o n  gas, o r  r a t h e r  s i n g l e  OPWts with an or thogonal i ty  hole .  

T h i s  energy u,, which we s h a l l  d i scuss  f u r t h e r  i n  7, depends § 
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only on t h e  volume o f  t h e  system, not  t h e  atomic p o s i t i o n s z n .  

We are here  i n t e r e s t e d  i n  t h e  s t r u c t u r e  dependent energy o f  atomic 

rearrangements a t  constant  volume. It i s  ( see ,  e.g., Cohen 1962, 

1963; Harr ison 1963, 1966; Sham 1963: Blandin 1963: Pick and 

Sarma 1964; Heine and Weaire 1967) 

(1.41) 

Here u, i s  t h e  Ewald o r  Fuchs (1935) energy o f  po in t  ions  o f  

charge z* i n  a uniform negative background, l e s s  -0.9 z* e /Ra 

a l r eady  included i n  u,. 
second order  pe r tu rba t ion  theory appl ied  t o  (1.37) and we s h a l l  

de f ine  /3 and!& as we der ive i t .  

2 2  

The remainder of  (1 .41)  comes from 

The l a r g e s t  con t r ibu t ion  t o  

us i s  t h e  sum o f  one-electron energ ies  E (5). The second o rde r  

con t r ibu t ion  t o  ( 5 )  from a s i n g l e  q i s  
N 

(1 .42)  

This  has t o  be summed over a l l  occupied s t a t e s  i n s i d e  t h e  Fermi 

su r face ,  which t o  second order may be taken  as the  unperturbed 

Fermi sphere. We ob ta in  
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where % i s  the pe r tu rba t ion  c h a r a c t e r i s t i c  

( 1 . 4 4 )  

whose value has a l ready  been given i n  (1.19). A s  i s  w e l l  known 

i n  Hartree-Fock theory,  c e r t a i n  e l e c t r o s t a t i c  and exchange terms 

have t o  be sub t r ac t ed  from t h e  sum of t h e  eigenvalues E ( k ) ,  a s  

otherwise they  would be counted twice i n  t h e  t o t a l  energy u . 
Tha t  i s  t h e  o r i g i n  of  p i n  ( 1 . 4 1 ) .  

t i o n  i n  t h e  t o t a l  energy a r e  t r e a t e d  by the  Hubbard-Sham 

approximation (Sham 1963, 1965), it t u r n s  out p i s  t h e  same as 

E (1.18), but t h i s  would not be s o  i n  a more complete many-body 

t reatment .  Summation over q t hen  g ives  ( 1 . 4 1 ) .  

Ly 

When exchange and co r re l a -  

N 

I n  t h e  s t e p  from (1 .42)  t o  (1 .43) ,  we have t r e a t e d  lSvl  

as a constant  f a c t o r  and appl ied  t h e  summation only t o  t h e  

denominator. Since v ( q )  i s  i n  f a c t  nonlocal,  t h i s  i s  an approxi- 

mation which need no t  be made but i s  not  a s  s e r i o u s  a s  might  a t  

f i r s t  appear ( s e e  Harr ison 1966, p. 43) .  I n  ( 1 . 4 4 ) ,  a l l  terms 

wi th  k and k+q both i n s i d e  the  Fermi sphere cancel exac t ly  s ince  

they  correspond t o  mixing wave func t ions  i n s i d e  t h e  s i n g l e  S la te r  

determinant .  The l a r g e s t  cont r ibu t ions  t o  ( 1 . 4 1 ) ,  (1 .43 )  comes 

N -cy 

when t h e  energy denominator goes t o  zero a t  t h e  l i m i t i n g  poin t  

where & i s  j u s t  i n s i d e  and k+q j u s t  ou ts ide  t h e  Fermi sphere.  

The e r r o r  i s  t h e r e f o r e  not l a r g e  i f  we take  v ( q )  f o r  s c a t t e r i n g  

on t h e  Fermi sphere a s  be fo re ,  and we sha l l  term t h i s  the  l i m i t -  

NrV 
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ing point approximation. The reader is referred to Harrison (1966) 
fhe C o M t r t  u t , b n  of 

and Kleinman (1966) for various details concerning the or .k hogonality A 
hole, exchange, etc. -fo u .  

One of the most fruitful applications of (1.41) has been 

to the calculation of  phonon spectra (Sham 1963). 

The phonon frequency is simply a measure of the energy of a lat- 

tice wave distortion. Fig. 13 shows one recent such calculation 

for A (Animalu, Bonsignori and Bortolani 1966), computed from 

a pseudopotential based on the model (1.12) and quite close to 

fig. 11. With the same pseudopotential Hodges (1967) has calcu- 

lated the stacking fault energy o f  A t  as 195 ergs cm-2 compared 

with the experimental value 280 * 50 ergs cm (Edington and 

Smallman 1965). 

-2 

All workers have found that the results of such calcula- 

tions depend rather sensitively on v(q). 

weight IS(q)12 in q-space is given simply by the mean atom den- 

The mean structural 

sity, and any structural change merely shifts it around. One 

is effectively differentiating [v( q ) ]  '. 
always a cancellation between the two terms in (1.41), leaving a 

net small quantity. The Ewald term always opposes distortions 

from a regular symmetrical structure, whereas the band structure 

term reduces this since it describes the screening by the electron 

gas. A pseudopotential fitted to two experimental points as in 

fig. 11 leaves open considerable uncertainties particularly about 

the behaviour at large q and the nonlocal corrections. There is 

also doubt about the exchange and correlation energy in 

Moreover there is 
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and the orthogonality hole. 

therefore be to consolidate all the uncertainties into 

The most fruitful procedure may 

With a calculated or experimentally determined pseudopotential 

as starting approximation, & ( q )  can be fitted to the measured 

phonon spectra, and then applied to stacking fault calculations, 

phase changes ( 47), and the structure of liquids (Johnson et a1 

1964 ) . 
The energy (1.41) may be Fourier transformed t o  an effec- 

tive pair potential 9 (r) between ions (Cohen 1962, Harrison 
1966) : 

(1.46) 

At large r it turns into the Friedel wiggles: 

In the present formulation, the asymptotio form (1.47) arises from 

the region q 

most rapid variation (see 5 7). 
2kk in $He tntegration (1.46), where Y n a s  its 
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It corresponds therefore to neglecting the variation of v(q). 

Blandin (1966) has applied this approximation to stacking 

fault calculations, among other things, where the arrangement 

of nearest neighbours does not change. While Hodges (1967) 

has not found it a satisfactory approximation for detailed 

numerical calculation, it does give an illuminating picture of 

the broad trends with valency. 

Everything so far has been based on perturbation theory 

and the assumption of a weak pseudopotential. In a regular 

crystalline structure, even a complicated one, this condition 

is satisfied, as it is t o o  in a crystal distorted by a lattice 

wave or a stacking fault, because the atom density is very uni- 

form. However in a vacancy, near an interstitial, or at a surface, 

the potential becomes strong due to the large v(q) at small q 

(fig. 11). ['Strong' and 'large' compared with v(q) at the 

reciprocal lattice vectors, not with bare atomic potentials.] 

Perturbation theory no longer suffices. It is necessary t o  solve 

for the t-matrix (Messiah 1961) and do the self-consistency cal- 

culation in terms of it. Bennemann has developed a new iteration 

procedure for calculation t especially for potentials peaked in q 

space aroung q = 0 as v ( q )  is (fig. ll), and applied it to prob- 

lems of bond formation, work function, and formation and migration 

energies of vacancies and interstitials in group 4 semiconductors 

(Bennemann 1964, 1965). 
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1.5 LANDAU QUASI-PARTICLES 

I n  metals t h e  Coulomb i n t e r a c t i o n  between conduction 

e l e c t r o n s  i s  t y p i c a l l y  o f  o rder  1 Ry, q u i t e  comparable w i t h  t h e  

bandwidth. It i s  t h e r e f o r e  a t  f irst  s i g h t  s u r p r i s i n g  that  a 

model o f  independent p a r t i c l e s  i n  one-electron Bloch o r b i t a l s  vk, such as we have been using, i s  a t  a l l  r e l e v a n t .  

moving through t h e  metal i s  an e l e c t r o n  surrounded by a denuded 

The e n t i t y  
Ac 

region,  the c o r r e l a t i o n  and exchange-hole. I t s  energy i s  def ined  

by t h e  zero of the inverse  Green func t ion  Go 

can w r i t e  a SchrBdinger equation f o r  t h e  motion of t h e  whole quasi-  

-1 (p,r ,E),  and we 
e- 

p a r t i c l e  

(1.48) 

where M i s  t h e  'proper s e l f  energy' ope ra to r  descr ib ing  t h e  ex- 

change and c o r r e l a t i o n  w i t h  t h e  o t h e r  conduction e l ec t rons .  For 

a f ree  e l e c t r o n  gas i t  reduces to 

t h e  q u a s i - p a r t i c l e  moves through a pe r iod ic  medium, a l l  t h e  con- 

cep t s  o f s s p a c e ,  t h e  Bloch theorem and B r i l l o u i n  zones, remain 

v a l i d .  

( k )  def ined  i n  9 2 .  Since /cc xc 

There is ,  however, one q u a l i f i c a t i o n :  t h e  q u a s i - p a r t i c l e  

has a f i n i t e  l i f e t i m e  and the energy an imaginary component. There 
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i s  a r e s i d u a l  screened Coulomb i n t e r a c t i o n  between quas i -pa r t i c l e s ,  

s o  t h a t  a q u a s i - p a r t i c l e  k above t h e  Fermi su r face  may c o l l i d e  

with one kl i n  t h e  Fermi sea which i s  s c a t t e r e d  to,fik2 while t h e  

o r i g i n a l  quas i -pa r t i c l e  r e c o i l s  t o  k Both energy and momentum 

have t o  be conserved i n  t h e  process, t h e  former implying t h a t s l ,  

k of t h e  Fermi 

l e v e l  where E ( k )  i s  t h e  o r i g i n a l  q u a s i - p a r t i c l e  energy. T h i s  

requirement pu t s  a severe l i m i t a t f o n  on t h e  range o f  c o l l i s i o n s  

which a r e  p o s s i b l e  when E - EF i s  small, and t h e  l i f e t i m e  of 

t h e  q u a s i - p a r t i c l e  tends t o  i n f i n i t y  a s  ( E  - fF)-*. The Fermi 

su r face  i t s e l f  i s  therefore p e r f e c t l y  sharp  (Mott  1956), as i s  

cy 

N 

-3 

and lc3 must a l l  l i k e  within an energy Ic(k)- 
-2 w 

(v 

indeed found i n  t h e  de Haas-van Alphen e f f e c t  where f e a t u r e s  of 

t h e  Fermi su r face  on t h e  s c a l e  o f  t o  Ry may b e  s tud ied .  

The e f f e c t  i s  well known i n  the  s o f t  X-ray emission s p e c t r a  where 

t h e  c u t  o f f  a t  t h e  F e r m i l e v e l  i s  sharp,  but t h e  t r a n s i t i o n s  from 

s t a t e s  near  t h e  bot tom of t h e  band a r e  broadened of t he  o rde r  o f  

0 .1  Ry. The broadening o f  s t a t e s  wel l  above cF i s  presumably 

comparable. 

I n  many phenomena one i s  only concerned with low energy 

produced by e l e c t r i c  and magnetic e x c i t a t i o n s  very c l o s e  t o  E 
f i e l d s  and thermal exc i t a t ion .  For such s i t u a t i o n s  t h e  s t a t e s  

of t h e  whole e l e c t r o n  system may be s p e c i f i e d  by a d i s t r i b u t i o n  

( f k  - f o k )  of quas i -pa r t i c l e s  j u s t  above 

below. 

w r i t e  t h e  q u a s i - p a r t i c l e  d i s t r i b u t i o n  as ( f k  - f o k )  t o  preserve  

s i m i l a r i t y  t o  t h e  ordinary d iscuss ion  o f  independent p a r t i c l e s .  

EF and quasi-holes j u s t  
N N 

Here f O k  i s  t h e  Fermi-Dirac d i s t r i b u t i o n  a t  T = 0, and we 
ccr 

v H 
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The total energy of the system (to second order in 

fk - fo,) may be written (Landau 1956) 
N cv 

(k,k') represents the interaction energy of quasi-particles, 

and the variables k,kt are taken to include a specification of spin. 

Before we discuss the contribution of 7 to various properties, we 
must say precisely what we mean. As mentioned in 

connection with (1.48), the one-quasi-particle energy 

tains an exchange and correlation term pxc(k) which was stated 

to be almost independect of k. This is true to within loo/,, for a 

r y -  

A-v 

where 1 

f2 and in 

E ( k )  con- 
hc 

- 
NFE metal and in any case becomes a bit meaningless well below € 
because of the lifetime broadening. However near cF where E(k) 

P- 

is well defined, detailed calculations (Rice 1965 and references 

there) suggest that the k dependence of pxc for a free electron 
t ~- 

gas contributes up t o  t o  the electron velocity a € / a h  k. 
These are certainly many-body corrections but they are incorporated 

in the (k) and hence already included in the independent parti- 

cle model. We are concerned with further corrections arising from 
e d  

t he  interaction (k,kl) in (1.49). 7 - 4  

The best known example is the enhancement of the spin 

paramagnetism. The simple Pauli result f82\h/( EF) for the 



susceptibility counts only the single-quasi-particle energy 

& (k) (Z. p. 286) ,  whereas turning some spins over alters the 

total exchange energy of the system in a way that enhances the 

susceptibility. 

v 

From (1.49) the susceptibility becomes 

When bE/&,is 3)rc& as in transition metals, 9 
unity, resulting in a formally infinite susceptibility and 

hence a spontaneous ferromagnetic polarization. 

may exceed - 

Another important application of (1.49) is to the elec- 

tronic specific heat. In thermal equilibrium there are equal 

numbers of excited quasi-particle just above any element dSk of 

Fermi surface, and quasi-holes below. Their contributions exactly 
N 

cancel in the second term of (1.49) and the electronic specific 

heat is given by the usual formula L r2 k2 N(EF) in terms of 
the one-quasi-particle density of states N( EF). 

&ular field sense by the interaction from the other quasi- 

3 

The energy of a quasi-particle may be considered modified 
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p a r t i c l e s  present :  

The l o c a l  energy E" of  a quas i -pa r t i c l e  may depend on r s i n c e  f k  

i n  genera l  does, and we can def ine a ' l o c a l  Fermi sur face!  o r  

sur face  of equal chemical p o t e n t i a l  by E ( k , r )  = E,. 
i n  t r a n s p o r t  theory,  we wr i te  

N ru 

h, 

A s  usual  
N U  

where kn i s  t h e  component of k normal t o  t h e  Fermi su r face .  

0 measures t h e  d i s t ance  i n  k space t h a t  t h e  Fermi su r face  has  been 

d i s t o r t e d  from equi l ibr ium. A l t e r n a t i v e l y  the  q u a s i - p a r t i c l e  

d i s t r i b u t i o n  may be def ined i n  terms of t h e  d i s t o r t i o n  Vk($) 

Then * 

(v 

h 

[ n o t  t o  be confused wi th  t h e  wave f u n c t i o n  f ] f rom t h e  ' l o c a l  

Fermi su r face '  (Heine 1962): 
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.> (nk is the unit normal on the Fermi surface.- 

order to solve it, one must express it completely in terms of 

@ or p, but we have written a hybrid form to exhibit each term 
at its simplest. The time-dependent term must depend on the com- 

plete quasi-particle distribution @ and not , since in 

terms of which y is defined also changes with time. 
term however involves because the other quasi-particles 

exert accelerations through (k,kl) which keep constant. 

The scattering term involves ok/z(k) in a relaxation time approxi- 

mation since the relaxation is of the whole system to equilibrium. 

The drift 

e- 

N 

However, if we write a collision integral for elastic scattering, 

that depends on v/ since is conserved (Silin 1958, Heine 

1962 ) . 
The total current may be written 

In the case of time-independent processes, (1.54) and (1.55) in 

terms of are formally identical with the equations in the 

independent quasi-particle model if we assume elastic scattering. 

There are then no Landau corrections to the transport properties. 

This conclusion still holds for thermal currents and in the 

presence of static magnetic fields, and applies for example to 

the Wiedemann-Franz law. Time-dependent transport properties 

in general do have corrections through the first term in (1.54). 

In the case of the anomalous skin effect, the corrections tend 

to zero in the extreme anomalous limit (Silin 1957) because the 
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displacement is such a sharp spike around the Fermi equator as 

pictured by the ineffectiveness concept (Z. p. 244). The same 

applies to the cyclotron frequency under Azbel-Kaner conditions, 

which remains as normally defined in terms of the Fermi velocity 

In the opposite limit when the >€(:)/a% Cy k (Z. pp. 250, 255). 

electric field is uniform over the cyclotrorr orbit as realized 

in semiconductors, there are Landau corrections. It would be 

interesting if with ultrasonic waves one coald cover the crucial 

range between the two extremes. 

A more fundamental formula for the total current is - 

in terms of the currentJk carried by a quasi-particle. This is 

not e zk but 
ry 

In the case of a free electron gas, i.e., wit? Interaction but 

zero periodic potential, the momentum of a quasi-particle must 

be -k k and the current (e/m)t; Then (1.57) reduces to the 
e 

Landau identity 
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for parallel and anGiparaiiei ~J=,LY 2 3  

means that  for a free electron gas 

certain exact cancellations of many-body corrections can take 

place. For example, the 'semiconductor' cyclotron mass becomes 

the bare electron mass m, which is what the usual formula for 

the cyclotron mass would give if applied t o  the Hartree band struc- 

ture 4 k /2m without the exchange and correlation terms 
That may partly explain why k - p  perturbation theory is so success- 

ful in fitting the observed cyclotron masses in semiconductors 

2 2  
Pxc(k)* 

M.y 

because the kop perturbation theory also breaks down for the ex- 

change and correlation potential. 
" 

The 7 (k,c) considered so far is the screened Coulomb 
Lr 

interaction. There is another one, the interaction via virtual 

phonons. As is well known since it is the origin of supercon- 

ductivity, an electron moving through t.he lattice attracts the 

positive ions in its immediate neighbourhood, and their snall 

displacement to the centre results in an attractive potential for 

other electrons. It contributes also 50  the self-energy E (k), 
analogously to pxc(&). 
write 

ry 

At absolute zero of temperature we may 

where ke is the purely electronic energy and dd the matrix ele- 
ment for emission of a phonon q of energy 3 with the electron 

q 
N )r 
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being scattered to k+q. If we consider k just below the Fermi -, /v 

surface, the scattering can only contribute as in (1.44) if k+q 

is an empty state above &F, the contribution being large only 

if k and k+q lie within BD (the Debye temperature) of E F. 
distortion of the band structure is shown in fig. 14. The reduc- 

tion in the Fermi velocity is about 3 5 ° / 0  in A t  , a factor of 

--?, 

The 
H *@w 

two in Pb, for example, as observed in the cyclotron mass and 

electronic specific heat (Ashcroft and Wilkins 1965). At high 

temperatures the effect disappears because with the thermal 

excitation of quasi-particles there are terms with positive 

energy denominator which cancel the negative ones. The general 

framework of the Landau theory still applies, even at finite 

temperature, and it turns out that time-independent transport 

processes are unaffected by the phonon contributions, i.e., 

the interaction 

(fig. 14) of the single quasi-particle spectrum (Prange and 
Kadanoff 1964). The anomaly of fig. 14, being intimately con- 

7 (k,kf) cancels the effect of the distortion 
H -  

nected with the discontinuity at the Fermi surface, rides up 

and down with EF if the electron density is altered, which 
allows one to derive an identity between the reduction in 

>€/a k in the one-quasi-particle energy and the mean value 

(& ,g) around the Fermi surface. 
The reader is referred to Nozi3res (1964) for a general 

Of 7 
development of the Landau theory with referencesto the literature, 

to Prange and Kadanoff (1964) for its formulation with the phonon 

interaction, and to Heine, Nozikres and Wilkins (1966) for a re- 
view of its application to the screening and scattering of pseudo- 
potentials. 
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TABLE 1. Approximately band gaps 2 v ( g )  f o r  
hypothetical bcc structures (in 
Ry. ), from calculations by Animalu 
and Heine (1965). 

0.05 0.04 0.02 0.19 0.06 

A1 Ga In T1 

0.05 -0.01 -0.03 -0.10 
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FIGURE CAPTIONS 

Fig. 1 The free electron Fermi sphere (light) and the observed 

Fermi surface of lead (heavy), shown with Brillouin 

zone planes in extended k space. 

Gold 1965). 

(After Anderson and 
N 

Fig. 2 Similar t o  fig. 1, but with the various parts of the 

Fermi surface joined together inside the fundamental 

Brillouin zone. (After Anderson and Gold 1965). 

P Fig. 3 Real wave function )v and pseudo wave function 
of an electron in a NFE metal. 

the ion core. 

Re is the radius of 

Fig. 4 (No comment) 

Fig. 5 The pseudopotential v(q) defined in terms of the scat- 

tering amplitude of an atom, pictured as a black box, 

for scattering of electrons from k t o  k+q. 
h/ d, 

Fig. 6 The potential and pseudopotential (for e = 0 states) 

of a Si4+ ion. 

form V ( r )  = Z(r)/r and V 

Note V and V both become equal to the Coulomb potential 

The potential V is expressed in the 

similarly in terms of Z PS PS (r). 

PS 
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-4/r outside the core which has a radius of about one 

Bohr unit. (After Cohen and Heine 1961). 

Fig. 7 A model pseudopotential for an ion of charge z. 

Fig. 8 Brillouin zone f o r  face centred cubic lattice, showing 

points of high symmetry. 

Fig. 9 Pseudopotential v( q )  for aluminium, showing its non- 

local nature. The top and bottom curves are for 

backward and forward scattering respectively (k and 

k+q parallel and antiparallel in eq. 1.5), whereas 

the middle curve is for scattering on the Fermi sphere 

as in fig. 10. (After Animalu, private communication). 

d 

- 4  

Fig. 10 Scattering on the Fermi sphere. 

Fig. 11 Pseudopotential of aluminium. 

Fig. 12 Pseudopotential v ( q )  for indium, as fitted from InP, 

8 InAs, and InSb, all scaled to the atomic volume 

of metallic indium, and x from indium metal. The 

curve is calculated from the model potential (1.12) 

and (1.16). (After Animalu and Heine 1965) .  
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Fig. 13 Calculated (continuous curve) and measurec ( c i r c l e s )  

phonon spectrum of' aluminium. ( A f t e r  Animalu e t  a1 

1966). 

Fig.  14 Effect o f  e l e c t r o n  i n t e r a c t i o n  v i a  v i r t u a l  phonons on 

t h e  band s t r u c t u r e  near  t h e  Fermi l e v e l  a t  absolu te  

zero of temperature. 

Fig. 15 Band s t r u c t u r e  of copper ( schemat ic ) .  

t! w), 
Fig. 16  The p e r t u r b a t i o n  c h a r a c t e r i s t i c  ( q ) ,  eq. ( 1 . 1 9 ) , ~  

a 
i n  uniks of T € ~ ~  

Fig .  17 The energy-wave number c h a r a c t e r i s t i c  (schematic) .  

Fig.  18 Pos i t i ons  of q o  and 2kF of d i v a l e n t  and t r i v a l e n t  

metals, t oge the r  with s t r u c t u r a l  weights o f  f cc ,  

hcp and bcc s t r u c t u r e s ,  a l l  i n  u n i t s  of 27r/A. 

F ig .  19 Band s t r u c t u r e  energy i n  8 cone model. (Weaire, 

p r i v a t e  communication). 
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